卓尔高考网

扩展卡尔曼滤波EKF与多传感器融合

篇首语:本文由小编为大家整理,主要介绍了扩展卡尔曼滤波EKF与多传感器融合相关的知识,希望对你有一定的参考价值。

Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍EKF,并介绍其在无人驾驶多传感器融合上的应用。

KF与EKF

本文假定读者已熟悉KF,若不熟悉请参考卡尔曼滤波简介。

KF与EKF的区别如下:

  1. 预测未来: x=Fx+u x=f(x,u) 代替;其余 F Fj代替。
  2. 修正当下:将状态映射到测量的 Hx h(x) 代替;其余 H Hj代替。

其中,非线性函数 f(x,u)h(x) 用非线性得到了更精准的状态预测值、映射后的测量值;线性变换 FjHj 通过线性变换使得变换后的 xz 仍满足高斯分布的假设。

FjHj 计算方式如下:

Fjb=f(x,u)x=h(x)x

为什么要用EKF

KF的假设之一就是高斯分布的 x 预测后仍服从高斯分布,高斯分布的x变换到测量空间后仍服从高斯分布。可是,假如 FH 是非线性变换,那么上述条件则不成立。

将非线性系统线性化

既然非线性系统不行,那么很自然的解决思路就是将非线性系统线性化。

对于一维系统,采用泰勒一阶展开即可得到:

f(x)f(μ)+f(μ)x(xμ)

对于多维系统,仍旧采用泰勒一阶展开即可得到:

T(x)f(a)+(xa)TDf(a)

其中, Df(a) 是Jacobian矩阵。

多传感器融合

lidar与radar

本文将以汽车跟踪为例,目标是知道汽车时刻的状态 x=(px,py,vx,vy) 。已知的传感器有lidar、radar。

  • lidar:笛卡尔坐标系。可检测到位置,没有速度信息。其测量值 z=(px,py)
  • radar:极坐标系。可检测到距离,角度,速度信息,但是精度较低。其测量值 z=(ρ,ϕ,ρ˙) ,图示如下。

传感器融合步骤

步骤图如上所示,包括:

  1. 收到第一个测量值,对状态 x 进行初始化。
  2. 预测未来
  3. 修正当下

初始化

初始化,指在收到第一个测量值后,对状态x进行初始化。初始化如下,同时加上对时间的更新。

对于radar来说,

pxpyvxv

您可能还会对下面的文章感兴趣: